Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(11)2023 May 26.
Article in English | MEDLINE | ID: mdl-37299646

ABSTRACT

Porous carbon materials have demonstrated exceptional performance in various energy and environment-related applications. Recently, research on supercapacitors has been steadily increasing, and porous carbon materials have emerged as the most significant electrode material for supercapacitors. Nonetheless, the high cost and potential for environmental pollution associated with the preparation process of porous carbon materials remain significant issues. This paper presents an overview of common methods for preparing porous carbon materials, including the carbon-activation method, hard-templating method, soft-templating method, sacrificial-templating method, and self-templating method. Additionally, we also review several emerging methods for the preparation of porous carbon materials, such as copolymer pyrolysis, carbohydrate self-activation, and laser scribing. We then categorise porous carbons based on their pore sizes and the presence or absence of heteroatom doping. Finally, we provide an overview of recent applications of porous carbon materials as electrodes for supercapacitors.

2.
Molecules ; 28(7)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37049897

ABSTRACT

When compared to expensive lithium metal, the metal sodium resources on Earth are abundant and evenly distributed. Therefore, low-cost sodium-ion batteries are expected to replace lithium-ion batteries and become the most likely energy storage system for large-scale applications. Among the many anode materials for sodium-ion batteries, hard carbon has obvious advantages and great commercial potential. In this review, the adsorption behavior of sodium ions at the active sites on the surface of hard carbon, the process of entering the graphite lamellar, and their sequence in the discharge process are analyzed. The controversial storage mechanism of sodium ions is discussed, and four storage mechanisms for sodium ions are summarized. Not only is the storage mechanism of sodium ions (in hard carbon) analyzed in depth, but also the relationships between their morphology and structure regulation and between heteroatom doping and electrolyte optimization are further discussed, as well as the electrochemical performance of hard carbon anodes in sodium-ion batteries. It is expected that the sodium-ion batteries with hard carbon anodes will have excellent electrochemical performance, and lower costs will be required for large-scale energy storage systems.

3.
Environ Sci Process Impacts ; 15(7): 1391-6, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23702512

ABSTRACT

The potential biotoxicity to the environment should be addressed during wastewater treatment. In this study, biotoxicity of coking wastewater effluent from MBR, Fenton, electro-Fenton and coagulation treatment processes was evaluated using embryos and larvae of Japanese medaka (Oryzias latipes). The acute toxicity based on 96-h larval mortality as well as the chronic toxicity based on embryo hatching, larvae swim-up failure, growth, and sexual ratio were determined. The results showed that different treatment processes have various biotoxicity levels. The acute toxicity of Fenton and electro-Fenton effluents was much higher than that of MBR and coagulation. For the chronic toxicity, the effluent of the Fenton/electro-Fenton process displayed lower embryo hatching, larvae survival and growth in comparison with the effluents of MBR and coagulation. No endocrine disruption was detected in MBR, Fenton and electro-Fenton effluents, but was contained in the coagulation effluent. The biotoxicity test indicated that the effluent of MBR was very safe for the environment. The toxicological indices were necessary for ecological safety maintenance in the industrial wastewater treatment.


Subject(s)
Coke , Embryo, Nonmammalian/drug effects , Oryzias , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/toxicity , Animals , Bioreactors , Flocculation , Industrial Waste , Lethal Dose 50
SELECTION OF CITATIONS
SEARCH DETAIL
...